Mathematics, Algebra, and Geometry $_{_{\mathrm{Satya}}}^{\mathrm{by}}$

 $\rm http://www.thesatya.com/$

Contents

1	\mathbf{Alg}	gebra	1						
	1.1	Logarithms	2						
	1.2	Complex numbers	2						
	1.3	Quadratic equations	3						
	1.4	Sequences and series	3						
	1.5	Factorials and Probability	3						
2	Trig	gonometry	4						
3	Trig	Trigonometric identities							
	3.1	Angular relations	4						
	3.2	Sine-Cosine-Tangent Combos	5						
	3.3	Halving angles	5						
		3.3.1 More angular trigonometric relations	6						
	3.4	Trigonometric Rules	6						
	3.5	Inverse trigonometric relations	6						
4	Coc	ordinate geometry	7						
	4.1	Triangles	7						
	4.2	Straight lines	7						
	4.3	Line pairs	8						
5	Me	nsuration	8						
	5.1	Solids	8						
	5.2	Plane figures	9						
6	Nui	merical Methods	9						
1	A	Algebra							
	1. (a	$(a+b)^2 = a^2 + 2ab + b^2$; $a^2 + b^2 = (a+b)^2 - 2ab$							
	`	$(a - b)^2 = a^2 - 2ab + b^2$; $a^2 + b^2 = (a - b)^2 + 2ab$							
	`	$a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)$							
	`								
	4 (0	$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$: $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$							

5.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$
; $a^3 - b^3 = (a-b)^3 + 3ab(a-b)$

6.
$$a^2 - b^2 = (a+b)(a-b)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

9.
$$a^n - b^n = (a - b)(a^{(n-1)} + a^{(n-2)}b + a^{(n-3)} + b^2 + \dots + b^{(n-1)})$$
 where $n \in \mathbb{N}$

10.
$$a^m.a^n = a^{m+n}$$
 where $m, n \in \mathbf{Q}, a \in \mathbf{R}$

11.
$$\frac{a^m}{a^n} = \begin{cases} a^{m-n} & \text{if } m > n \\ 1 & \text{if } m = n \\ \frac{1}{a^{n-m}} & \text{if } m < n; m, n \in \mathbf{Q}, a \in \mathbf{R}, a \neq 0 \end{cases}$$

12.
$$(a^m)^n = a^{mn} = (a^n)^m; m, n \in \mathbf{Q}, a \in \mathbf{R}$$

13.
$$(ab)^n = a^n \cdot b^n$$
 where $a, b \in \mathbf{R}, n \in \mathbf{Q}$

14.
$$(\frac{a}{b})^n = \frac{a^n}{b^n}$$
 where $a, b \in \mathbf{R}, n \in \mathbf{Q}$

15.
$$a^0 = 1$$
 where $a \in \mathbf{R}, a \neq 0$

16.
$$a^{-n} = \frac{1}{a^n}, a^n = \frac{1}{a^{-n}}$$
 where $a \in \mathbf{R}, a \neq 0, n \in \mathbf{Q}$

17.
$$a^{p/q} = \sqrt[q]{a^p}$$
 where $a \in \mathbf{R}, a > 0, p, q \in \mathbf{N}$

18. If
$$a^m = a^n$$
 where $a \in \mathbf{R}, a \neq \pm 1, a \neq 0$, then $m = n$

19. If
$$a^n = b^n$$
 where $n \neq 0$, then $a = \pm b$

20. If
$$a, x, y \in \mathbf{Q}$$
 and \sqrt{x}, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = \sqrt{y}$, then $a = 0$ and $x = y$

21. If
$$a, b, x, y \in \mathbf{Q}$$
 and \sqrt{x}, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = b + \sqrt{y}$, then $a = b$ and $x = y$

1.1 Logarithms

- 22. $\log_a mn = \log_a m + \log_a n$ where a, m, n are positive real numbers and $a \neq 1$,
- 23. $\log_a(\frac{m}{n}) = \log_a m \log_a n$ where a, m, n are positive real numbers, $a \neq 1$,
- 24. $\log_a m^n = n \log_a m$ where a and m are positive real numbers, $a \neq 1, n \in \mathbf{R}$

25.
$$log_b a = \frac{\log_k a}{\log_k b}$$
 where a, b, k are positive real numbers, $b \neq 1, k \neq 1$

26.
$$\log_b a = \frac{1}{\log_a b}$$
 where a, b are positive real numbers, $a \neq 1, b \neq 1$

27. If a, m, n are positive real numbers, $a \neq 1$, and if $\log_a m = \log_a n$, then m = n

1.2 Complex numbers

28. If
$$a+ib=0$$
 where $a,b\in\mathbf{R}$ and $i=\sqrt{-1}$, then $a=b=0$

29. If
$$a+ib=x+iy$$
 where $a,b,x,y\in\mathbf{R},\,i=\sqrt{-1},$ then $a=x$ and $b=y$

1.3 Quadratic equations

- 30. The roots of the quadratic equation $ax^2 + bx + c = 0$; $a \neq 0$ are $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$ The solution set of the equation is $\left\{\begin{array}{cc} -b+\sqrt{\Delta} \\ 2a \end{array}\right\}$, $\frac{-b-\sqrt{\Delta}}{2a}$ $\left\{\begin{array}{cc} -b-\sqrt{\Delta} \\ 2a \end{array}\right\}$ where $\Delta=$ discriminant $=b^2-4ac$
- 31. The roots are real and distinct if $\Delta > 0$
- 32. The roots are real and coincident if $\Delta = 0$
- 33. The roots are non-real if $\Delta < 0$
- 34. If α and β are the roots of the equation $ax^2 + bx + c = 0$; $a \neq 0$, then

(a)
$$\alpha + \beta = -\frac{b}{a} = -\frac{\text{Coeff.of} x}{\text{Coeff.of} x^2}$$

(b) $\alpha\beta = \frac{c}{a} = \frac{\text{Const.term}}{\text{Coeff.of} x^2}$

- 35. The quadratic equations whose roots are α and β is $(x-\alpha)(x-\beta)=0$ i.e. $x^2-(\alpha+\beta)x+\alpha\beta=0$ i.e. $x^2-Sx+P=0$ where S= sum of the roots and P= product of the roots.

1.4 Sequences and series

- 36. For an Arithmetic Progression (A.P.) whose first term is 'a' and common difference is 'd',
 - (a) n^{th} term = $t_n = a + (n-1)d$
 - (b) The sum of the first n terms = $S_n = \frac{n}{2}(a+l) = \frac{n}{2}\{2a+(n-l)d\}$ where l = last term = a + (n-1)d
- 37. For a Geometric Progression (G.P.) whose first term is 'a' and common ratio is 'r',
 - (a) n^{th} term $= t_n = ar^{n-1}$

$$= \underbrace{a(1-r^n)}_{1-r} \quad \text{if } r \le 1$$

 $= \underbrace{\frac{a(1-r^n)}{1-r}} \quad \text{if } r \leq 1$ (b) The sum of the first n terms $= S_n = \underbrace{\frac{a(r^n-1)}{r-1}} \quad \text{if } r \geq 1$

$$=$$
 na if $r=1$

38. For any sequence $\{t_n\}$, $S_n - S_{n-1} = t_n$ where $S_n = \text{sum of the first } n \text{ terms.}$

39.
$$\sum_{r=1}^{n} r = 1 + 2 + 3 + 4 + \ldots + n = \frac{n}{2}(n+1)$$

40.
$$\sum_{r=1}^{n} r^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1)$$

41.
$$\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2}{4} (n+1)^2$$

Factorials and Probability

42.
$$|n = n! = 1.2.3.4...(n-1)n$$

43.
$$n! = n(n-1)! = n(n-1)(n-2)! = n(n-1)(n-2)(n-3)! = \dots$$

44.
$$0! = 1$$

45.
$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$
 ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

46.
$${}^{n}P_{0} = 1$$
 ${}^{n}P_{1} = n$ ${}^{n}P_{2} = n(n-1)$ ${}^{n}P_{3} = n(n-1)(n-2)\dots$

47.
$${}^{n}C_{0} = 1$$
 ${}^{n}C_{1} = n$ ${}^{n}C_{2} = \frac{n(n-1)}{2!}$ ${}^{n}C_{3} = \frac{n(n-1)(n-2)}{3!} \dots$

$$48. \ \frac{{}^{n}P_{r}}{{}^{n}C_{r}} = r!$$

49.
$${}^{n}C_{r} = {}^{n}C_{n-r}$$
 ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$

50. If
$${}^nC_x = {}^nC_y$$
, then $x = y$ or $x + y = n$

51. If
$$a, b \in \mathbf{R}$$
 and $n \in \mathbf{N}$, then $(a+b)^n = {}^nC_0a^nb^0 + {}^nC_1a^{n-1}b^1 + {}^nC_2a^{n-2}b^2 + \ldots + {}^nC_ra^{n-r}b^r + \ldots {}^nC_na^0b^n$

52. The general term in the expansion of $(a+b)^n$ is given by $t_{r+1} = {}^nC_r a^{n-r} b^r$

2 Trigonometry

53.
$$\pi^c = 180^\circ$$
; $1^c = (\frac{180^\circ}{\pi}) = 57^\circ 17' 44.8"$; $1^\circ = 0.0175 radians$

- 54. $s = r\theta$ where s = arc length, r = radius and θ is the angle in radians subtended by the arc at the centre of the circle.
- 55. $A = \frac{1}{2}r^2\theta = \frac{1}{2}rs$ where A = area of sector of a circle, s = arc length, r = radius and θ is the angle in radians subtended by the arc at the centre of the circle.

3 Trigonometric identities

56.

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{1}$$

57. These follow by dividing 1 by $\cos^2 \theta$ and $\sin^2 \theta$ respectively:

$$\sec^2 \theta = 1 + \tan^2 \theta \tag{2}$$

$$\csc^2\theta = 1 + \cot^2\theta \tag{3}$$

58. These follow because sec, cosec, cot are reciprocals of cos, sin, and tan:

$$\cos\theta \sec\theta = 1 \tag{4}$$

$$\sin\theta \csc\theta = 1 \tag{5}$$

$$an \theta \cot \theta = 1 \tag{6}$$

59.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

3.1 Angular relations

60. $-1 \le \cos \theta \le 1$ i.e. $|\cos \theta| \le 1$ $-1 \le \sin \theta \le 1$ i.e. $|\sin \theta| \le 1$

61.

$$\sin n\pi = 0, \qquad n \in \mathbf{I} \tag{7}$$

$$\cos n\pi = (-1)^n, \quad n \in \mathbf{I} \tag{8}$$

$$\sin(2n+1)\frac{\pi}{2} = (-1)^n, \quad n \in \mathbf{I}$$
(9)

$$\cos(2n+1)\frac{\pi}{2} = 0, \qquad n \in \mathbf{I}$$
 (10)

62.	$\cos(-\theta)$	$=\cos\theta$	$\sin(-\theta)$	$=-\sin\theta$	$\tan(-\theta)$	$=-\tan\theta$
-----	-----------------	---------------	-----------------	----------------	-----------------	----------------

		0°	30°	45°	60°	90°
	\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
63.	cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	1
	tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
		0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

64. $\sin(n\pi \pm \theta) = (\text{sign}) \sin \theta, n \in \mathbf{I}$, sign is determined by quadrant to which the angle belongs.

65.
$$\cos(n\pi \pm \theta) = (\mathbf{sign})\cos\theta, n \in \mathbf{I}$$

66. $\sin((2n+1)\frac{\pi}{2}\pm\theta) = (\mathbf{sign})\cos\theta, n \in \mathbf{I}$, sign is determined by quadrant to which the angle belongs.

67.
$$\cos((2n+1)\frac{\pi}{2}\pm\theta) = (\mathbf{sign})\sin\theta, n \in \mathbf{I}$$

68. If
$$\sin \theta = \sin \alpha$$
, then $\theta = n\pi + (-1)^n \alpha$, $n \in \mathbf{I}$

69. If
$$\cos \theta = \cos \alpha$$
, then $\theta = 2n\pi + \alpha, n \in \mathbf{I}$

70. If
$$\tan \theta = \tan \alpha$$
, then $\theta = n\pi + \alpha$, $n \in \mathbf{I}$

3.2 Sine-Cosine-Tangent Combos

72.
$$2 \sin \alpha \cos \beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

$$2 \cos \alpha \sin \beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$

$$2 \cos \alpha \cos \beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

$$\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

73.
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$
$$\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$$

74. Tan relations:

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \quad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
 (11)

3.3 Halving angles

(In the following, sometimes we use $2\theta = \alpha$, and $\theta = \alpha/2$)

75. $\sin 2\theta = 2\sin\theta\cos\theta$

76.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta \tag{12}$$

77. By 12, $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ and $\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$

78. By 11,
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

79. If
$$\tan \theta = t$$
, then $\cos 2\theta = \frac{1-t^2}{1+t^2}$ $\sin 2\theta = \frac{2t}{1+t^2}$

3.3.1 More angular trigonometric relations

80.
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

81.
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

82.
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$

3.4 Trigonometric Rules

- 83. Sine Rule: In a $\triangle ABC$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ where R is the circum-radius of the triangle.
- 84. Cosine Rule: In a $\triangle ABC$, $\begin{array}{rcl} a^2 & = & b^2+c^2-2bc\cos A \\ b^2 & = & c^2+a^2-2ca\cos B \\ c^2 & = & a^2+b^2-2ab\cos C \end{array}$
- 85. Projection Rule: In a $\triangle ABC$, $\begin{array}{rcl} a & = & b\cos C + c\cos B \\ b & = & c\cos A + a\cos C \\ c & = & a\cos B + b\cos A \end{array}$
- 86. Area of $\triangle ABC = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$ (half of the product of the length of two sides and the sine of the angle between them.)

3.5 Inverse trigonometric relations

87.
$$\csc^{-1}\frac{1}{x} = \sin^{-1}x$$
 $\sec^{-1}\frac{1}{x} = \cos^{-1}x$ $\cot^{-1}\frac{1}{x} = \tan^{-1}x$

88.
$$\sin^{-1}(\sin x) = x \text{ for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

 $\cos^{-1}(\cos x) = x \text{ for } 0 \le x \le \pi$
 $\tan^{-1}(\tan x) = x \text{ for } -\frac{\pi}{2} < x < \frac{\pi}{2}$

89.
$$\sin^{-1}(-x) = -\sin^{-1} x$$
 for $-1 \le x \le 1$
 $\cos^{-1}(-x) = \pi - \cos^{-1} x$ for $-1 \le x \le 1$
 $\tan^{-1}(-x) = -\tan^{-1} x \ \forall x \in \mathbf{R}$

90. If
$$x > 0, y > 0$$

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

Additionally, if
$$xy < 1$$
, then $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$

and, if
$$xy > 1$$
, then $\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} (\frac{x+y}{1-xy})$

4 Coordinate geometry

91. Distance formula: Distance between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance of the point P(x, y) from the origin is

$$d(O,P) = \sqrt{x^2 + y^2}$$

92. Section formula: If $A = (x_1, y_1)$, $B = (x_2, y_2)$ and C(x, y) divides AB in the ratio m : n then

$$x = \underline{mx_2 + nx_1}_{m+n} \quad , \quad y = \underline{my_2 + ny_1}_{m+n}$$

93. Mid-point formula: If $A = (x_1, y_1)$, $B = (x_2, y_2)$ and C(x, y) is the midpoint of AB then

$$x = \underline{x_1 + x_2}_2 \quad , \quad y = \underline{y_1 + y_2}_2$$

4.1 Triangles

94. Centroid formula: If G(x,y) is the centroid of a triangle whose vertices are $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$, then

$$x = \underline{x_1 + x_2 + x_3}{3}$$
 , $y = \underline{y_1 + y_2 + y_3}{3}$

95. Area of a triangle whose vertices are $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3)$ is

$$\Delta = \frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$$

Area of a triangle whose vertices are $O(0,0), A(x_1,y_1), B(x_2,y_2)$ is

$$\Delta = \frac{1}{2} |x_1 y_2 - x_2 y_1|$$

4.2 Straight lines

96. Equation of the x-axis is y = 0

Equation of the y-axis is x = 0

97. Equation of straight line parallel to x-axis and passing through point P(a,b) is y=b

Equation of straight line parallel to y-axis and passing through point P(a,b) is x=a

98. Slope of a straight line

$$m = \tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$$

where θ is the inclination of the straight line and (x_1, y_1) and (x_2, y_2) are any two points on the line.

99. Equation of a straight line

Slope-origin form
$$y = mx$$
Point-origin form $xy_1 = yx_1$
Slope-intercept form $y = mx + c$
Point-slope form $y - y_1 = m(x - x_1)$
Two-points form $y - y_1 = \frac{x - x_1}{y_2 - y_1}$
Double-intercept form $xb + ya = ab$
Normal form $xcos \alpha + y sin \alpha = p$

100. Parametric equations of a straight line are

$$x = x_1 + r\cos\theta$$
 $y = y_1 + r\sin\theta$

101. General equation of a straight line is ax + by + c = 0

For this line,

Slope=
$$-\frac{a}{b}$$
 x-intercept = $-\frac{c}{a}$ y-intercept = $-\frac{c}{b}$

4.3 Line pairs

- 102. The acute angle between two straight lines with slopes m and m' is $\tan \theta = \left| \frac{m m'}{1 + mm'} \right|$
- 103. The straight lines with slopes m and m' are mutually perpendicular iff mm' = -1
- 104. The straight lines with slopes m and m' are parallel to each other iff m = m'
- 105. Any line parallel to the line ax + by + c = 0 has an equation of the form ax + by + k = 0 where $k \in \mathbf{R}$
- 106. Any line perpendicular to the line ax + by + c = 0 has an equation of the form bx ay + k = 0 where $k \in \mathbf{R}$
- 107. The acute angle between the two straight lines ax + by + c = 0, a'x + b'y + c' = 0 is given by

$$\tan \theta = \left| \begin{array}{c} \frac{ab' - a'b}{aa' + bb'} \end{array} \right| \tag{13}$$

108. By 13 The straight lines ax + by + c = 0, a'x + b'y + c' = 0 are

mutually perpendicular if aa' + bb' = 0

parallel if
$$ab' = a'b$$

identical if
$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

109. The perpendicular distance of the point $P(x_1, y_1)$ from the straight line ax + by + c = 0 is

$$\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

The perpendicular distance of the origin $(x_1 = 0, y_1 = 0)$ from the straight line is

$$\frac{c}{\sqrt{a^2+b^2}}$$

The distance between two parallel straight lines ax + by + c = 0 and ax + by + c' = 0 is

$$\left| \frac{c-c'}{\sqrt{a^2+b^2}} \right|$$

5 Mensuration

5.1 Solids

110. Sphere of radius r

Volume =
$$\frac{4}{3}\pi r^3$$

Surface area =
$$4\pi r^2$$

111. Right circular cone, radius r height h slant height l

Volume =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area= πrl

Total surface area = $\pi rl + \pi r^2$

112. Right circular cylinder, radius r height h

Volume =
$$\pi r^2 h$$

Curved surface area = $2\pi rh$

Total surface area = $2\pi rh + 2\pi r^2$

113. Cube with side length x

$$Volume=x^3$$

Surface area = $6x^2$

114. Volume of a rectangular parallelopiped = length x breadth x height

5.2 Plane figures

115. Circle of radius r

Area =
$$\pi r^2$$

Perimeter = $2\pi r$

- 116. Triangle, area = $\frac{1}{2}$ x base x height
- 117. Rectangle, area = length x breadth, perimeter = $2 \times (length + breadth)$
- 118. Square, area = $(side)^2$, perimeter = 4 x side
- 119. Area of a trapezium = $\frac{1}{2}$ x (sum of parallel sides) x (distance between the parallel sides)
- 120. Area of an equilateral triangle = $\frac{\sqrt{3}}{4} a^2 = \frac{1}{\sqrt{3}} p^2$

where a is the length of a side and p is the length of an altitude.

6 Numerical Methods

- 121. Bisection Method: $c = \frac{x_1 + x_2}{2}$
- 122. False Position (Regula-Falsi) Method: $\begin{vmatrix} x_n+1 & 0 & 1 \\ a & f(a) & 1 \\ x_n & f(x_n) & 1 \end{vmatrix} = 0$
- 123. Newton-Raphson Method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$

$$f(x) = n^{th}$$
 degree polynomial $<=> \Delta^n f(x)$ constant

$$y_{n+1} = (1 + \Delta)y_n$$
 $y_i = (1 - \nabla)y_{i+1}$

$$1 + \Delta = E \qquad E^{-1} = 1 - \nabla$$

124. Forward interpolation (Newton-Gregory): $u = \frac{\overline{x} - x_0}{n}$

$$f(\overline{x}) = f(x_0) + u\Delta f(x_0) + \frac{u(u-1)}{2!} \Delta^2 f(x_0) + \dots$$

125. Backward interpolation: $\nu = \frac{\overline{x} - x_n}{n}$

$$f(\overline{x}) = f(x_n) + \nu \nabla f(x_n) + \frac{\nu(\nu+1)}{2!} \nabla^2 f(x_n) + \dots$$

- 126. Trapezoidal Rule: $\int_a^b f(x) dx = h(\frac{y_0 + y_n}{2} + y_1 + y_2 + ... + y_{n-1})$
- 127. Simpson's (one-third) rule: $\int_a^b y dx = \frac{1}{3} h[(y_0 + y_n) + 4(y_1 + y_3 + \ldots + y_{n-1}) + 2(y_2 + y_4 + \ldots + y_{n-2})]$ n is even.